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This paper analyses a case of maintenance planning that was researched in previous work and thereby 

improved using predictive maintenance with an artificial intelligence (AI) technique. In particular, the en- 

vironmental implications are presented using a life cycle assessment. Using AI to develop maintenance 

planning could be a feasible method that can outperform other strategies. However, the results of this 

analysis show that the economic and environmental performance depends largely on the assessment set- 

ting. Therefore, applying appropriate system boundaries and functional unit is of major importance to 

avoid sub-optimization when maintenance planning is developed. 
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. Introduction 

A vast amount of data from products in the use phase is col-

ected and stored. At the same time, a huge market potential ex-

sts for applying artificial intelligence (AI) techniques to the data

o improve maintenance services. However, despite the data avail-

ble and proven AI techniques, the industrial application of these

s still in its infancy. By taking advantage of these opportunities,

he capacity and competitiveness of industry and the business and

nvironmental performance can be further enhanced. 

Maintenance has been vital for manufacturers of complex prod-

cts from the competitiveness and financial viewpoints for many

ears ( Takata et al., 2004 ; Roy et al., 2016 ). Today, maintenance

s meeting new opportunities provided by two megatrends in in-

ustry. First, industries are experiencing transitions towards Indus-

ry 4.0, involving the cyber-physical system (CPS) ( Monostori et al.,

016 ), AI ( Russell and Norvig, 2010 ), and connectivity of a large

umber of devices in the world ( Lee et al., 2013 ). Second, from the

nvironmental sustainability viewpoint, maintenance is expected 

o play a crucial role ( Umeda et al., 2012 ) because it can prolong

roducts’ lives and is prioritized over material recycling according

o the waste hierarchy (reduce-reuse-recycle). Even for the circular
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conomy ( Webster, 2015 ), maintenance is supposed to play a cru-

ial role. These two megatrends are bringing new opportunities to

anufacturing industries (e.g., Bumblauskas et al., 2017 ): mainte-

ance could be lifted to a higher level in terms of accuracy, real-

imeliness, cost savings, and resource efficiency ( Ren et al., 2018 ).

o further improve the outcome and to avoid sub-optimization, it

s also of importance to define and use relevant system boundaries

nd objectives when applying these opportunities ( Abdoli et al.,

019 ). 

Today, many complex product manufacturers who provide

aintenance as part of their product/service system (PSS) ( Meier

t al., 2010 ) can access a huge amount of data through the Inter-

et of Things (IoT) from products in use that is potentially useful

or maintenance. In addition, such data is possible to be collected,

ransferred, stored, and analyzed with the new technologies. AI

echniques are applicable to the data to capture information or

nowledge of value. The huge potential for AI techniques is ac-

nowledged by many companies to create new value in main-

enance. However, there exists a lack of knowledge to facilitate

ractitioners in exploiting the AI techniques in maintenance with

onsideration of environmental and economic consequences. 

This paper aims to fill the knowledge gap by showing the en-

ironmental consequences of predictive maintenance with AI tech-

iques and discussing their implications. Here, the environmental

ssessment of a hypothetical case with the maintenance of wind
under the CC BY-NC-ND license. 
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turbines researched in previous work ( Holmgren, 2019 ) is per-

formed, followed by the presentation of a comparative discussion

with the environmental assessment of maintenance of products in

other sectors using industry data. 

The remainder of this paper consists of the following: Sec-

tion 2 describes the knowledge gap to be addressed by this paper

in a more specific manner. Next, Section 3 presents the materials

and method adopted by this paper. Sections 4 and 5 then show

and discuss the results, respectively. Finally, Section 6 concludes

this paper with future work. 

2. Knowledge gap and research motivation 

In research and development for maintenance, much effort has

been given to research about data collection including sensors,

while research about how to utilize the collected data to create or

improve services is both missing and demanded. A large and in-

creasing number of articles have been published in, e.g., the jour-

nal Sensors; however, the articles concerning value creation from

data are much fewer. More precisely, a comprehensive literature

review ( Wamba et al., 2015 ) found only 62 out of 1153 articles

about value creation of big data-related topics that were deemed

relevant for value creation, and concluded that “very few stud-

ies have been conducted to assess the real potential and value of

data”. Clearly, techniques that are needed to enhance maintenance

to a higher level exist, but from the scientific perspective, assess-

ment and evaluation of the techniques’ implications are among the

major missing insights. 

These missing insights can be reflected upon considering sev-

eral layers in a hierarchy for value co-creation, as depicted by

Fig. 1: for business enterprises to co-create value with their part-

ners, relevant data needs to be collected from different lifecycle

phases such as the use phase (the lowest layer), and data and in-

formation need to be managed in computer systems. These are

insufficient to co-create value, and the engineering and manage-

ment process that involves organizational issues needs to be im-

plemented appropriately in companies. It is pointed out that tradi-

tional engineering companies will have to adapt their engineering

processes and organization also on the context of smart products

and services ( Tomiyama et al., 2019 ). Furthermore, this layer is es-

sential because many manufacturers expect Industry 4.0 to enable

new business models, such as pay per availability ( Lichtblau et al.,

2015 ). Note that this hierarchy is not unique to maintenance, and

a similar one is used for CPS in a more general manner ( VDI/VDE,

2013 ). It should be mentioned that the process of value co-creation

using these new technologies (the highest layer) is also significant,

as acknowledged in, e.g., Lanza et al. (2019 ), but beyond the scope

of this paper. This gap motivated this paper with a focus on the

two layers, including the interactions between them, as depicted

by Fig. 1 . 
Fig. 1. Focus of the paper in a hierarchy for value co-creation. 
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. Materials and method 

.1. Description of the case 

The environmental assessment of applying an AI technique in a

aintenance strategy is performed for the hypothetical case of an

nshore 2 MW wind power turbine. It is a suitable case since reli-

bility and availability are of great importance. Infrequent replace-

ent of major components, in combination with frequent failures

f other components, can lead to high operation and maintenance

osts and downtime of several weeks with a loss of revenue ( Sheng

nd O’Connor, 2017 ). A gearbox is addressed as a single compo-

ent, and its maintenance is evaluated. This is a critical component

hat can constitute about 20% of the total downtime ( McMillan and

ult, 2008 , Hau, 2013 ). The cost associated with reactive mainte-

ance of a gearbox is also high, where failures can be about 15–

0% of the price of the turbine itself ( Emanuelsson, 2011 ). This

akes gearbox maintenance a high priority. 

.2. Materials 

The maintenance strategies that are used in the environmental

nalysis (presented in Section 4 ) were developed and computer-

imulated in the work of Holmgren (2019 ). The three maintenance

trategies are general maintenance planning, oracle maintenance

lanning, and periodic maintenance planning. 

General maintenance planning is a strategy where an AI tech-

ique is implemented. It is based on an adaptation of the Monte

arlo tree search (MCTS) method and deep reinforcement learn-

ng (MCTS-DNN) ( Holmgren, 2019 ), where the modification makes

t possible to deal with maintenance planning for stochastic prob-

ems. MCTS is a heuristic tree search algorithm that is consid-

red to be a promising method for planning. It differs from most

einforcement learning (RL) methods in that it relies on an ex-

ernal model to solve the modeling problem. The deep reinforce-

ent learning applied uses a deep neural network (DNN) instead

f traditional RL, which improves generalization and scalability.

efore the simulation, the DNN is trained using a self-play algo-

ithm. The MCTS-DNN generates a search tree using an exploratory

ction-selection policy and observes the outcome using a simula-

ion model. In this case, the choice of the action with the highest

xpected outcome in each of the time steps is based on a planning

orizon of 9 years and 10,0 0 0 iterations. 

Oracle maintenance planning is an approach that can preview

xactly when a component will fail, and a preventive maintenance

ction is scheduled the time step before the time of failure. It rep-

esents a lower bound of maintenance costs and has no basis in

eal-world application. 

Periodic maintenance planning consists of periodically sched-

led maintenance events. Some corrective maintenance will still

e necessary since components might fail before the scheduled

aintenance due to stochastic failure. An aggressive approach is

dopted, which means a higher willingness to accept the risk of a

reakdown, and hence the maintenance intervals will be longer. 

One hundred independent simulations were performed for each

aintenance strategy, and each simulation covers a use phase of

5 years with a decision point each year for what action to choose.

or each strategy, there are three actions that can be chosen at

very decision point: pass (i.e., do nothing), preventive mainte-

ance (PM), or corrective maintenance (CM). The simulations also

nclude a failure probability, i.e., a description of the degradation

ver time for a component and the mean time to failure (MTTF).

he data necessary for the simulations were built on Ref. Ding and

ian (2012 ), and the objective was to minimize the overall mainte-

ance cost. The cost elements included were a variable preventive

eplacement cost, a fixed preventive maintenance cost, a failure re-
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Table 1 

Bill of material for a 2 MW gearbox and transports. 

Material Amount Production process 

Cast iron 7325 kg Casting 

Steel, low alloy 7325 kg Forging, rolling 

Lubricant oil 315 l 

Transports Amount Transport mode 

Service technicians 450 km LDV and passenger car 

Oil change device 450 km Truck 3.5–7.5 ton 

Crane base 450 km Truck 3.5–7.5 ton 

Crane 450 km Truck 7.5–16 ton 

Gearbox 450 km Truck 7.5–16 ton 
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Fig. 2. Relative global warming impact of the different maintenance events. 
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lacement cost, an access cost, and a fixed cost ( Ding and Tian,

012 ). 

.3. Method 

The environmental assessment is based on the life cycle assess-

ent (LCA) method, according to ISO 14040 ( ISO, 2006 ) and ISO

4044 ( ISO, 2006 ). The SimaPro 8.0 LCA software and the EcoIn-

ent 3.0 database are used for the inventory and to define flows of

aterial and emissions throughout the lifecycle ( Weidema et al.,

013 ). The environmental assessment includes the impact category

lobal warming (climate change) measured in kg CO 2 eq, and the

ssessment method used is IPCC 2013 GWP 100a. The functional

nit is 1 MWh produced electricity, and the system boundary is

he maintenance activities and the material use including extrac-

ion, manufacturing, use and end-of-life, and transports needed

uring a time period of 25 years. 

. Result of the environmental assessment 

.1. Life cycle inventory 

The different maintenance events are defined according to the

ollowing: 

• Pass: Transport of service technician to the wind power site. 

• PM: Oil change, incineration of used oil, transport of service

technicians, and oil change device. 

• CM: Replacement of gearbox and oil, recycling of metal (90%),

landfill of metal (10%), and incineration of used oil. Transporta-

tion includes transport of the new and the replaced gearbox,

of a crane used to change the gearbox and transport of service

technicians. 

The material content of the gearbox ( Elsam, 2004 ) and the

ransports are described in Table 1 . The assumed transport dis-

ances are to and from the site of the wind turbine. 

During maintenance, the wind turbine is at a standstill, and in

ome circumstances, there is downtime in production and hence

oss of revenue. In the environmental assessment, the following

ssumptions are made. Routine maintenance takes place when the

ind conditions are favorable, i.e., when the wind speed is too low

or the turbine to produce electricity. Therefore, the downtime for

 pass event is set to 0 h. For PM, the downtime is set to 8 h

ased on that an oil change device operated from the ground can

hange oil in two gearboxes during one working day. CM leads to

 downtime of 9 days, including the time needed for planning and

erforming the replacement, and with the assumption that the re-

lacement gearbox is readily available. 

The effect on the loss of electricity production is estimated us-

ng the downtime and the average annual production of the wind

urbine, which is 25% of the installed capacity ( IVA, 2016 ). The av-

rage loss of production due to maintenance events is then esti-

ated to 4 MWh per PM event and 108 MWh per CM event. 
.2. Life cycle assessment 

Three maintenance strategies that were developed and

omputer-simulated in previous work ( Holmgren, 2019 ) are

ompared in this research: oracle, periodic-aggressive, and general.

he representative case used for the assessment is the mean

alue of the number of events, based on the 100 simulations of

he respective strategy ( Holmgren, 2019 ). The oracle maintenance

lanner resulted in 20 pass events and 5 PM events. There were no

M events since the Oracle maintenance planner can foresee break

owns and will perform preventive maintenance beforehand. The

eriodic maintenance planner led to 20 pass, 4 PM, and 1 CM

vents. With the general strategy, the mean number of events was

1 pass, 2 PM, and 2 CM. 

CM led to the highest environmental impact, which is mainly

ue to the material used in the replaced gearbox. The recycling

f material has a positive effect, but the environmental impact of

eplacing the entire gearbox is still almost eight times as high as

he PM event. The effect of this can be seen in Fig. 2 , where the

elative share of the global warming impact of the three optional

aintenance events for the different strategies is presented. Even

hough there is only one CM for the periodic-aggressive strategy

he relative share of the environmental impact is approximately

8%. For the general strategy, with two CM events, the share

mounts to around 60% of the total emission of kg CO 2 eq/MWh. 

Fig. 3 shows a comparison of the global warming impact result-

ng from the three strategies and for the time period of 25 years.

t is also clearly visible in this figure that the general strategy will

ead to substantially higher global warming impact compared to

he other two options, approximately 100% as much as oracle and

0% higher than periodic-aggressive. This can be compared to the

ffect on maintenance cost, which shows that the general strat-

gy will lead to a lower total maintenance cost, with around 10%,

ompared to periodic-aggressive, as presented in Holmgren (2019 ).

his implies that using MCTS with deep reinforcement learning for

ptimization is a feasible method that could outperform the other

trategies. However, in this case, minimizing cost and environmen-

al impact are conflicting objectives, and the reduction in mainte-

ance cost comes with the cost of a higher environmental impact. 

. Discussion 

.1. Relevance of the case to industrial practice 

Using the approach of MCTS with deep neural learning can be

 relevant method to explore the development of a general main-
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Fig. 3. Relative comparison of the global warming impact of different maintenance 

strategies. 
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tenance planner. However, the example that was assessed environ-

mentally in this paper also highlights the importance of using rel-

evant data of high quality in the training for the AI technique if

it is to be used for real maintenance planning. The example used

has only one PM event for the gearbox, when it, in reality, is sev-

eral, such as oil change, replace bearings and shafts, etc. The func-

tion used could, however, be developed to include several main-

tenance activities, which would improve the usefulness and the

economic and environmental assessment. Furthermore, the model

also needs to have a better description of the real-life conditions

of wind power. For instance, the designed lifetime of a gearbox is

20 years, but they seldom manage to pass 10 years before some

component breaks ( Anonymous, 2019 ). Moreover, according to ser-

vice technicians, the gearbox of a wind turbine can be changed

approximately 3 times over a 20-year period ( Emanuelsson, 2011 ).

Hence, the failure probability is also a main parameter and should

be based on real data, e.g., from conditioning monitoring. This is

data that are collected today, and there are also several models tar-

geting degradation and failure for wind turbines ( Seyr and Musu-

lus, 2019 ); hence, the potential for improvements is within reach. 

5.2. Discussion of the system boundary with cases from other sectors 

Section 4 describes the environmental impact of maintenance

activities using an AI algorithm. The assessment is performed for

a hypothetical case, which was simulated in the work of Holmgren

(2019 ). Using deep learning to develop a maintenance strategy, and

with the objective to minimize the maintenance cost, also led to

lower total cost compared to a strategy with periodic maintenance

(ibid.). However, the previous section showed this strategy, with

the assumptions made, led to a higher environmental impact com-

pared to the other strategies (see Fig. 3 ). This implicates that the

objective of applying an AI technique can have a considerable ef-

fect on the outcome of the environmental performance of the sys-

tem. Also, the system boundary is of great importance when de-

ciding upon the objective for the maintenance strategies and the

evaluation of the effects. 

The system boundary of the case and environmental assess-

ment in this paper can be viewed as a traditional business case

of a company that sells physical products. Hence, minimizing the

cost or increasing the profit of the company selling the products is

the focus and one to which the chosen maintenance strategy will

contribute. This can, as shown, lead to a situation where reducing

the cost is prioritized before resource efficiency and environmen-

tal impact. If one instead adopts a system boundary that includes
oth the provider of a product/service and the customer, which is

ften relevant in PSS contracts, the focus will most likely be dif-

erent. In this case, decreasing downtime at the customer could

e of main concern, and the maintenance strategies should, there-

ore, be adapted to lower the risk of a breakdown. Then, a critical

omponent may be replaced as a preventive measure before ap-

roaching the end of its’ technical life to ensure that the product

ill still be able to fulfill its function at the user. This will, how-

ver, shorten the time the component is used, and the potential of

seful life length is not realized. As a result, more components will

ikely be replaced during a certain time period compared to a peri-

dic maintenance strategy. For the provider of the product/service,

his could lead to both higher maintenance costs and higher en-

ironmental impact, as was explored with forklift trucks by Birch

yrberg and Orö (2019 ). The magnitude of this increase will de-

end on the specific conditions and the possibilities to make an

ccurate prediction of breakdowns ( Birch Tyrberg and Orö, 2019 ).

owever, the overall effect of a PSS will also be dependent on the

ffect on the customer side. If a reduced downtime of a product

eans there is less need for redundancy of the products in the

ystem, the system effect could be both reduced cost and better re-

ource efficiency. This is often the case with forklift trucks that are

rovided as a fleet to a user. As more users demand product avail-

bility, providing a fleet becomes more relevant. This also concerns

he need to set up the functional unit appropriately. 

Sectors where security and safety are of main concern, such as

ircraft, can have even broader system boundaries that include a

ocietal interest since the number of stakeholders is usually large.

hese types of sectors tend to be heavily regulated, and mainte-

ance is viewed as highly prioritized to ensure compliance with

he safety protocols. Due to the high safety margins and the way

hey have been practiced, there can be a significant opportunity

o apply AI techniques and develop maintenance strategies where

he service intervals and/or the used time of the components are

rolonged without imposing on safety levels, i.e., the number of

reakdowns do not increase. Such a maintenance strategy will

ikely have a positive effect on both environmental and cost per-

ormance. 

. Conclusions and future work 

This paper performed an environmental assessment of given

aintenance strategies, one of which is based on an AI technique.

t showed that there could be conflicting objectives between re-

ucing cost and reducing environmental impact. The analysis pre-

ented in discussion with the cases from other sectors shows that

mportant reasons are the objective used and the system bound-

ries applied. Furthermore, a product consists of several compo-

ents, and there can be a variety of maintenance plans for one

roduct. Hence, it is a system of systems ( Abdoli et al., 2019 ).

hen developing maintenance strategies by, for instance, using

I algorithms, it is important that this is not an isolated activity

or one smaller part of a product. Changes in one area will most

ikely affect other areas, and it should instead be seen as a part

ntegrated into a larger system, and the implementation of new

aintenance plans should be evaluated for the overall system.

ore research needs to be carried out with respect to this in order

o investigate impacts on the real world. 

It is vital to apply the systems perspective and use relevant ob-

ectives and appropriate system boundaries when evaluating the

ffects of a change in maintenance services. Further research will

ncompass this, including analyzing the differences between using

ifferent objectives and different system boundaries of the same

ystem. 
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